Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode

نویسندگان

  • Gheorghe M Borja
  • Eugenio Meza Mora
  • Blanca Barrón
  • Guillermo Gosset
  • Octavio T Ramírez
  • Alvaro R Lara
چکیده

BACKGROUND Plasmid DNA (pDNA) is a promising molecule for therapeutic applications. pDNA is produced by Escherichia coli in high cell-density cultivations (HCDC) using fed-batch mode. The typical limitations of such cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose permease for glucose uptake in E. coli (strain VH33) allows efficient growth, while strongly decreases acetate production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used commercial strain DH5α, carrying the same plasmid, was also cultivated under the same conditions. RESULTS The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and pDNA yields (YP/X). The triple mutant VH33 Δ (recA deoR nupG) accumulated low amounts of acetate and resulted in the best YP/X (4.22 mg/g), whereas YP/X of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of acetate. In contrast, DH5α produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the supercoiled fraction of the pDNA produced by the triple mutant was nearly constant throughout the cultivation. CONCLUSION The pDNA concentration obtained with the engineered strain VH33 Δ (recA deoR nupG) is, to the best of our knowledge, the highest reported for a batch cultivation, and its supercoiled fraction remained close to 80%. Strain VH33 Δ (recA deoR nupG) and its cultivation using elevated glucose concentrations represent an attractive technology for fast and efficient pDNA production and a valuable alternative to fed-batch cultivations of commercial strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological and Morphological Changes of Recombinant E. coli During Over-Expression of Human Interferon-g in HCDC

The objective of this research was to investigate the influence of the over-expression of recombinant interferon-g during high cell density cultivation on cellular characteristics of recombinant E. coli. Batch and fed-batch culture techniques were employed to grow Escherichia coli BL21 for production of human gamma-interferon in pET expression system. Final cell densities in batch and fed-batch...

متن کامل

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

Recent Advances in High Cell Density Cultivation for Production of Recombinant Protein

This paper reviews recent strategies used for increasing specific yield and productivity in high cell density cultures. High cell density cultures offer an efficient means for the economical production of recombinant proteins. However, there are still some challenges associated with high cell density cultivation (HCDC) techniques. A variety of strategies in several aspects including host design...

متن کامل

Maximizing Production of Human Interferon-γ in HCDC of Recombinant E. coli

Tuning recombinant protein expression is an approach which can be successfully employed for increasing the yield of recombinant protein production in high cell density cultures. On the other hand, most of the previous results reported the optimization induction conditions during batch and continuous culture of recombinant E. coli, and consequently fed-batch culture have received less attention....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012